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ABSTRACT

In plenty of real-world applications, data are collected in a stream-

ing fashion, and their accurate labels are hard to obtain. For instance,

in the environmental monitoring task, sensors are collecting the

data all the time. Still, their labels are scarce because the labeling

process requires human effort and can conceal annotation errors.

This paper investigates the problem of learning with weakly labeled

data streams, in which data are continuously collected, and only

a limited subset of streaming data is labeled but potentially with

noise. This setting is challenging and of great importance but rarely

studied in the literature. When the data are constantly gathered

with unknown noise on labels, it is quite challenging to design

algorithms to obtain a well-generalized classifier. To address this

difficulty, we propose a novel noise transition matrix estimation

approach for data streams with scarce noisy labels by online an-

chor points identification. Based on that, we propose an adaptive

learning algorithm for weakly labeled data streams via model reuse

and effectively alleviate the negative influence of label noise with

unlabeled data. Both theoretical analysis and extensive experiments

justify and validate the effectiveness of the proposed approach.
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1 INTRODUCTION

In recent years, machine learning algorithms have achieved prolific

success in various real-world applications [36]. These approaches,

such as deep learning, typically build models on a vast number of

data with accurate labels and then deploy them in the testing phase.

However, in many real-world applications, data are collected in the

stream fashion, and their labels are not always available because the

labeling process requires human effort expertise. Meanwhile, the

labels might be inaccurate due to manual labeling errors. Therefore,

it is desired to facilitate a learning system to online update, respond

in real-time, and be robust to weak supervisions [35].

In this paper, we consider the problem of learning with weakly

labeled data streams. Specifically, data are collected in the form

of a stream, with a small subset of data is observed with labels

while the others remain unlabeled. Meanwhile, the observed labels

might be inaccurate due to manual labeling errors. This setting is

crucial because it occurs in a variety of real-world applications. For

instance, the sensors continuously collect the data in environment

monitoring tasks or human activity recognition. At the same time,

their labels are manually annotated, which is only a small subset

of the whole data stream and could be wrongly labeled. A similar

situation also occurs in web data classification, where the unlabeled

data are accumulating over time. As the limitation on human effort,

only a small part of data is labeled and conceals noisy labels.

Most existing approaches consider either offline noisy label learn-

ing or data stream learning with accurately labeled data. To obtain

a statistically consistent classifier, label noise robust learning ap-

proaches typically need the prior knowledge of the noise transition

matrix or estimate them with sufficient noisy labeled data in an

offline manner [2]. When the noise transition matrix is unknown

and the data come in the form of a stream, it is hard to adapt the

offline techniques to online estimate the noise transition matrix

and recover the true loss of the underlying noise-free distribution.

Data stream learning approaches either maintain a single model

incrementally [5], or an ensemble of base learners [25]. This line of

work requires the ground-truth labels; the rise of label noise and

missing will deteriorate the performance if we directly update an

incremental model or ensemble the base learners on noisy labeled
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data. A few studies consider learning data streams with noisy la-

bels [8], but they typically focus on cleansing outliers and do not

explore the unlabeled data, whose number is much larger than that

of noisy labeled data in real-world tasks.

Due to the existence of label noise in data streams, we are re-

quired to align the learning models trained on weakly labeled data

to the noise-free distribution to obtain a statistically consistent

classifier rather than a direct ensemble. The central ingredient is

estimating the noise transition matrix to recover the underlying

true loss from weakly labeled data. A series of offline learning

methods are proposed to estimate the noise transition matrix with

pre-collected sufficient noisy labeled data. Based on the anchor

points assumption [19, 30] or anchor set condition [23], we can

calculate the noise transition matrix or distinguish the noise-free

distribution from noisy labeled data. However, these approaches

typically need to pre-collect a large number of noisy labeled data

and then identify the anchor points or estimate the mixture propor-

tion for noise transition matrix approximation in an offline manner.

The challenges arise to estimate the noise transition matrix from

data streams with a limited number of noisy labels and a vast

number of unlabeled data. This problem turns out quite challenging,

and it is non-trivial to take the advance in offline noisy transition

matrix estimation approaches to address this problem. On the one

hand, when the data arrives in a high-throughput stream, previous

methods only explore a part of the data as the stream is generally

too large to fully store in the memory. Furthermore, we must update

the model online and label the data in real-time. On the other hand,

these approaches cannot access label information from unlabeled

data, thus cannot leverage the unlabeled data to help to estimate

the anchor points and noise transition matrix.

In this paper, we propose an adaptive learning algorithm that

leverages several base models and a vast number of unlabeled data

to help to estimate the noise transition matrix and derive an online

learning model for weakly labeled data streams. We introduce and

reuse several base models trained on each weakly labeled data batch

to extract the information from high-throughput streams and adap-

tively update the learning model to make it respond in real-time.

The main idea is to leverage the local classifiers to help to identify

the anchor points in the data stream and adaptively estimate the

noise transition matrix. Then we align the classifiers trained on

weakly labeled data to noise-free distribution and reuse them to

derive an online model for weakly labeled data streams. We theo-

retically analyze the proposed algorithm by expected regret. The

empirical studies on synthetic data demonstrate the effectiveness

of the proposed approach for online noise transition matrix esti-

mation. Experiments on both benchmark datasets and real-world

applications validate our approach’s superiority.

We summarize our main contributions as follows.

(1) We investigate the problem of learning with noisy labeled

and unlabeled data streams, which accommodates many real-

world tasks but is rarely studied in the literature.

(2) We propose a stream learning approach, which adaptively

constructs and reuses several models to estimate the noise

transition matrix and derive an online classifier for weakly

labeled streams. We theoretically justify the effectiveness of

our proposed algorithm via regret analysis.

(3) We conduct extensive empirical evaluations on synthetic

examples, benchmark datasets, and real-world applications

to demonstrate the superiority of the proposed algorithm.

2 RELATEDWORKS

We first briefly review some related learning scenarios with our

task of learning with weakly labeled data streams.

Offline Learning with Noisy Labels. Learning with noisy la-

beled data has attracted a lot of attention in recent years. Many

statistical consistent algorithms are proposed to address the issue

of noisy labels, in which they guarantee the classifier learned from

the noisy labeled data to be consistent with the optimal classifier

with respect to the data with ground-truth labels [2, 19, 21]. This

line of works construct their models based on the prior knowledge

of noise transition matrix of or estimating it from sufficient noisy-

labeled data first. The estimation of the noise transition matrix

is one of the central challenges in the learning tasks with noisy

labeled data. A series of assumptions were proposed to estimate the

noise transition matrix, e.g., anchor words condition [3], anchor

points [19, 30], irreducibility [23]. Specifically, [19] assume there

exist some anchor points, i.e., instances belonging to a specific class

with probability one. [30] suppose there exist some verified data

belonging to the positive class with probability one. [23] make the

irreducibility assumption for the noisy labeled data, which says

that there exist some anchor points; thus, we can distinguish and

recover the noise-free distribution from noisy labeled data. These

methods mainly focus on the batch setting, while identifying the

anchor points in a data stream and online estimating the noise

transition matrix has not yet been well studied.

Besides the statistically consistent approaches, many practical

algorithms are proposed to alleviate the negative effect of noisy

labels. For example, many approaches are specifically designed to

e.g., selecting reliable examples [28], editing labels [18], or adding

implicit regularization [12]. Some of them can directly adapt to the

learning tasks for data streams. For example, we can filter the data

with large loss during the learning procedure [28]. Although these

methods obtain satisfactory empirical performance, their general

theoretical grantee is unclear.

Label-efficient Online Learning. As the data streams usually

contain a vast number of unlabeled data, many studies also exist on

training a well-generalized classifier with unlabeled data streams.

Some pioneering studies consider online active querying for un-

labeled streaming data learning. [5] study label-efficient online

learning for prediction with expert advice. They show that actively

querying with a constant probability achieves minimax-optimal

regret and query complexity for this problem. Subsequent works

model the label generation process by a parametric model and

obtain regret and query complexity guarantees dependent on the

fraction of examples with low margins [1]. Besides the querying

mechanism, many semi-supervised learning algorithms are pro-

posed to explore the high-throughput unlabeled data stream with a

limited number of labeled data to learn a classifier [10, 27]. How-

ever, if the label information is not ground-truth, these algorithms

probably converge to an arbitrary result.

Online Learning with Noisy Labels. The conflicts between

the fast development of data collecting techniques and the limitation
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in human labeling capability pose new challenges to the design

of streaming algorithms with noisy labeled data. When the noisy

transition matrix is given as prior knowledge, we can rewrite the

loss function to recover the risk with respect to the clean labeled

data in expectation [21]. With the rewritten loss, we can online

update themodels and then obtain a statistically consistent classifier

for the data streams. However, the noise transition matrix is usually

unknown ahead and hardly be estimated accurately before the

learning tasks. Some related works make certain assumptions on

the noise that the loss is perturbed by a noise distribution with zero-

mean and bounded variance, and propose an unbiased estimator for

non-linear functions based on oracle querying [6]. Another line of

robust boosting is also studied [4, 9]. Based on the assumption that

noisy labeled data are with large gradients, a recent work can be

adapted to the online learning with noisy labeled data by filtering

the instances with large gradient norm [26].

Apart from learning the data stream with weak supervision, re-

searchers also managed to handle even more challenging scenarios

where distribution change [31–33], new classes emerge [20, 34] or

feature space evolve [14, 15, 29] in the streaming data. To conclude,

efficient approaches dealing with weakly supervised streaming data

in open environments are very desired in real-world tasks [37].

3 SETTINGS

We first introduce the learning setting of weakly labeled data

streams and corresponding notations. In the ordinary supervised

multi-class learning, we denote by D the underlying distribution

from which the training data (x, 𝑦) ∈ X ×Y are independently and

identically sampled, where X ⊂ R𝑑 and Y = {1, ..., 𝐾} is the label
space of a multi-class learning task. We assume the streaming data

come in the form of mini-batches. At each time 𝑡 ∈ [𝑇 ], we receive
a batch of data B𝑡 = {x1𝑡 , ..., x𝑛𝑡 } of size 𝑛. We denote by {B𝑡 }𝑡=1,...,𝑇
an stream of size 𝑇 where each mini-batch comes continuously.

In the setting of noisy labeled and unlabeled data, for each in-

stance x𝑖 , we denote its true label by𝑦𝑖 and the observed noisy label

(if available) by𝑦𝑖 . We denote by B̃𝑡 = {(x𝑖𝑡 , 𝑦𝑖𝑡 )}𝑚𝑖=1∪{x
𝑗
𝑡 }𝑛𝑗=𝑚+1 the

semi-supervised data batch with𝑚 noisy labels. It is the union of

noisy labeled data and unlabeled data. The noisy label 𝑦𝑡 is flipped
from 𝑦𝑡 based on a noise transition matrix𝑀 , in which

𝑀𝑖, 𝑗 (x𝑡 ) := Pr[𝑦𝑡 = 𝑖 |𝑦𝑡 = 𝑗, x𝑡 ] .

In this work, we assume the label noise is class-dependent [21],

that is,𝑀 (x𝑡 ) = 𝑀 for any x𝑡 in the feature space. We notice that

the noise transition matrix𝑀 is unknown to the learner.

We consider a family of predictive models 𝑓 (w, 𝜙 (x)) ∈ R𝐾 ,
where w ∈ W is the parameters, 𝜙 : X ↦→ R𝑑 is the transforma-

tion function of the original feature x and 𝑓 : W × R𝑑 ↦→ R
𝐾

captures the structure of the model. The 𝑘-th entry of the model

[𝑓 (w, 𝜙 (x))]𝑘 can been seen as a score for the 𝑘-th class and then

we determine the final prediction by arg max𝑘∈[𝐾 ] [𝑓 (w, 𝜙 (x))]𝑘 .
Such a formulation is general enough to capture various models.

For example, we can choose 𝑓 (w, 𝜙 (x)) = 〈w, 𝜙 (x)〉 to use the

linear in parameter model and obtain 𝜙 (x) by the representation

learning methods. For notation simplicity, we use x instead of 𝜙 (x)
in the rest paper. The quality of the model is measured by the loss

Parameters: Learner’s parameter setW, feature space X, loss

function ℓ , time horizon 𝑇 (optional).

At each time instant 𝑡 = 1, ...,𝑇 :
1. Observe unlabeled data B𝑡 and predict by w𝑡 ∈ W
2. Receive noisy labels of a small subset in B𝑡

3. Update the online model from w𝑡 to w𝑡+1 ∈ W

Figure 1: Protocol of Learning withWeakly Labeled Streams

ℓ : R𝐾 × Y ↦→ R+, which can be any convex surrogate loss for

classification such as the hingle, squared and logistic loss, etc.

Since the data arrives in a high-throughput stream, we require

the learning system to run under time and memory constraints

because the labels are expected in real-time, and the stream is

typically too large to fully store. We formulate our learning protocol

of noisy labeled and unlabeled data streams in Figure 1.

4 OUR APPROACH

In this section, we present our adaptive learning approach for

weakly labeled data streams. We demonstrate that exploring un-

labeled data by several local classifiers plays a significant role in

estimating the noise transition matrix, especially when these noisy

labeled data in the data stream are scarce.

To deal with noisy labeled and unlabeled data stream, we first

rewrite the loss for noisy labeled data to align the models to noise-

free distribution, in which we reweight the noisy labeled instance

by a noise transition matrix. Then, we proceed to estimate the

noise transition matrix by identifying the anchor points in the

data streams with the help of several local classifiers and a vast

number of unlabeled data. Finally, we provide our adaptive learning

algorithm that reuse the local classifiers and leverage the entire

stream history to derive an accurate online model.

4.1 Learning with Noisy Labeled Data

We first consider exploring the noisy labeled data in the stream. In

the learning scenario with noisy labeled data, if we simply treat all

observed data as accurate, both empirical and theoretical perfor-

mance will suffer heavily from the label noise. In order to obtain

a well-generalized classifier on the test data, we aim to recover

the loss with respect to the ground-truth labeled data by instance

reweighing for noisy labeled data. Following a similar analysis for

the class-dependent label noise in [21], we have

ℓ (𝑓 (w, x), 𝑦) = E𝑦
[
ℓ̄ (𝑓 (w, x), 𝑦;𝑀)] ,

in which the surrogate loss ℓ̄ (·, ·;𝑀) with noise transition matrix

𝑀 for noisy labeled data is defined as

ℓ̄ (𝑓 (w, x), 𝑦 = 𝑖;𝑀) =
∑
𝑗 ∈Y

ℓ (𝑓 (w, x), 𝑦 = 𝑗) · [(𝑀	)−1] 𝑗,𝑖 , (1)

where [(𝑀	)−1] 𝑗,𝑖 is the 𝑗-th row and 𝑖-th column ofmatrix (𝑀	)−1.
The instance reweighing technique demonstrates that we re-

cover the loss of ground-truth labeled data with surrogate loss in

Eqn. (1) that reweightes the importance for noisy labeled data. We

then turn to the scenario of noisy labeled streams. As the data are

collected in a stream, we propose a stream learning algorithm with

surrogate gradients for noisy labeled data. Let ℓ (𝑓 (w, x), 𝑦) be a
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convex function with respect to w. Following a similar analysis for

the surrogate loss, the gradients 𝑔(w, x, 𝑦) on noisy labeled data

is an unbiased estimator of underlying gradients with respect to

ground-truth labeled data, that is,

E𝑦 [𝑔(w, x, 𝑦)] = 𝜕wℓ (𝑓 (w, x), 𝑦),
where

𝑔(w, x, 𝑦 = 𝑖) =
∑
𝑗

𝜕wℓ (𝑓 (w, x), 𝑦 = 𝑗) · [(𝑀	)−1] 𝑗,𝑖 . (2)

Now we are ready to propose our online gradient descent algo-

rithm with unbiased gradients 𝑔(w, x, 𝑦), that is,
w𝑡+1 = w𝑡 − 𝜂 · 𝑔(w𝑡 , x𝑡 , 𝑦𝑡 ). (3)

where 𝜂 > 0 is the learning rate.

In the following, we show that the proposed online gradient

descent algorithm for noisy-labeled data streams with the updating

procedure in (3) satisfies a low regret in expectation on the ground-

truth labeled sequences generate from noise-free distribution.

Theorem 1. Let ℓ (𝑓 (w, x), 𝑦) be convex with respect to w. De-

noting by E1:𝑇 [·] the expectation taken over the randomness on the

drawn of {𝑦𝑡 }𝑇𝑡=1, the update procedure in (3) with learning rate

𝜂 = 𝐷/(𝐿𝑀𝐺
√
𝑇 ) yields,

E1:𝑇

[
𝑇∑
𝑡=1

ℓ (𝑓 (w𝑡 , x𝑡 ), 𝑦𝑡 )
]
− min

w∈W

𝑇∑
𝑡=1

ℓ (𝑓 (w, x𝑡 ), 𝑦𝑡 ) ≤ 𝐿𝑀𝐷𝐺
√
𝑇

for any underlying clean data sequence {(x𝑡 , 𝑦𝑡 )}𝑇𝑡=1, where 𝐷 =
maxw1,w2∈W ‖w1 −w2‖2 is the diameter ofW and 𝐺 is an upper

bound on the gradient 𝐺 = maxw∈W,x∈X,𝑦∈Y ‖𝜕wℓ (𝑓 (w, x), 𝑦)‖2.
The constant 𝐿𝑀 = max𝑖, 𝑗

��[(𝑀	)−1]𝑖 𝑗
�� is the upper bound on the

every entry of the inverse of the noise transition matrix.

Remark 1. Theorem 1 demonstrates that through the proposed on-

line gradient descent algorithm (3) with unbiased gradients in (2), the

difference of the accumulated loss of the learned classifier sequences

{w𝑡 }𝑇𝑡=1 and the optimal classifier w∗ on the noise-free distribution

decreases in the order of 𝑜 (𝑇 ). Thus, we possess a statistically consis-

tent classifier. It is necessary to assume that 𝐿𝑀 is bounded, otherwise,

there are some classes whose label flipping rate is close to 1, which

means that we cannot recover the information of those extremely

noisy examples. Detailed proofs will be provided in the longer version.

Remark 2. The optimal tuning of 𝜂 requires the knowledge of 𝑇 .
There are approaches in the online learning literature to fixed it [13].

Besides, our experiments show that an empirical value of 𝜂 is good

enough to achieve nice performance for all experimental settings.

The central ingredient to obtain a well-generalized classifier is

the approximation of noise transition matrix 𝑀 . This result moti-

vates us to design an online approach for noise transition matrix

estimation from weakly labeled streams.

4.2 Online Estimation for Noise Transition
Matrix with Unlabeled Data

In this section, we present an online estimation approach for the

noise transition matrix. As the noisy labeled data are scarce, we aim

to explore a vast number of unlabeled data in the stream to help to

estimate the noise transition matrix, along with noisy labeled data.

We assume that the data streams contain some anchor points

for each class, which bridges the gap between the noisy labeled

data and the underlying noise-free distribution. Anchor points are

instances that belong to a certain class with probability one. For

example, some samples must belong to a certain class without any

ambiguity. Formally, the anchor points are defined as follows.

Definition 1 (Anchor Points). Given an instance (x𝑖 , 𝑦𝑖 ), if
Pr[𝑌 = 𝑦𝑖 |𝑋 = x𝑖 ] = 1, then we call (x𝑖 , 𝑦𝑖 ) an anchor point.

Based on the definition of anchor points, we have the following

equation for each anchor point (x𝑖 , 𝑦𝑖 = 𝑐) of class 𝑐 ,

Pr[𝑌 = 𝑦𝑖 = 𝑗 |𝑋 = x𝑖 ] =
𝐶∑
𝑐=1

𝑀𝑐,𝑗 Pr[𝑌 = 𝑦𝑖 = 𝑐 |𝑋 = x𝑖 ] = 𝑀𝑖, 𝑗 .

The left hand of the above equation is the class-posterior prob-

abilities of the noisy labels on the anchor points, which can be

approximated by the classifier learned on noisy labeled stream with

soft-max. Therefore, to estimate the noise transition matrix, we

require an online model that directly learns the noisy labeled data

and simultaneously identify the anchor points in the data stream.

For the estimation of class-posterior probabilities Pr[𝑦𝑖 = 𝑗 |𝑋 =
x𝑖 ] on the anchor points, we employ an online model w̃𝑡 ∈ W
with a semi-supervised learning algorithm that is directly trained

from the noisy labeled data and unlabeled data such as the Pseudo-

labeling algorithm [16]. The challenge arises in the online identifica-

tion of anchor points. Previous approaches typically train a classifier

on sufficient noisy labeled data and set the most high-confidence

instances as anchor points [7, 19]. However, when most data are

unlabeled and come as a stream, adapting the offline mechanism to

the data stream can be inaccurate for anchor points identification.

It is also not feasible to first collect sufficient noisy labeled data

to train a model and then identify the anchor points because we

require the stream learning system to online update and respond

in real-time. In the following, we propose a ensemble-based online

approach of anchor points identification with data streams.

We would like to introduce the following guiding principle for

online anchor points identification, that is,

Assumption 1 (pseudo-consistent). For an instance x𝑡 ∈ X, if

several unbiased models that trained on their weakly supervised data

make the same prediction (pseudo label) for this instance with high

confidence, then we consider it as an anchor point.

Assumption 1 is specially designed for identifying anchor points

in the weakly labeled data stream. We maintain several classifiers

trained with surrogate loss in (1) and a handful of candidate anchor

points for selection. We consider that the anchor points should

obtain the same prediction with high confidence from diverse weak

classifiers as they are non-ambiguous.

Based on assumption 1, we propose the Anchor Points Identifica-

tion (API) algorithm for the streaming data and adaptively estimate

the noise transition matrix with the help of unlabeled data. Sup-

pose the transition matrix in last round is available, we then train a

new classifier for the next batch with the surrogate loss in (1) and

update the transition matrix. For each data batch B̃𝑡 , we train a

local classifier w𝑙
𝑡 ∈ W (the superscript 𝑙 indicates that the model

is trained by this local batch) based on previous estimated noise
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Algorithm 1 Anchor Points Identification (API)

1: Maintain a model pool of size 𝐾 and a data pool of candidate

anchor points A, initial𝑀0 and confidence threshold 𝜎
2: for 𝑡 = 1, ...,𝑇 do

3: Receive B̃𝑡 and w̃𝑡

4: Train a local classifier w𝑙
𝑡 from B̃𝑡 by (4)

5: Add w
𝑙
𝑡 to model pool and data with high confidence larger

than 𝜎 in B̃𝑡 considered by w
𝑙
𝑡 to the anchor points set A

6: Find anchor points in the candidate set by pseudo-consistent

check and output the noise transition matrix𝑀𝑡 by (5)

7: Return noise transition matrix𝑀𝑡 and local classifiers

8: end for

transition matrix𝑀𝑡−1 and current batch of data, that is,

w
𝑙
𝑡 = arg min

w∈W

𝑚∑
𝑖=1

ℓ̄ (𝑓 (w, x𝑖𝑡 ), 𝑦𝑖𝑡 ;𝑀𝑡−1) + Ω(w, B̃𝑡 ) . (4)

where Ω(w, B̃𝑡 ) is the regularizer of model on the unlabeled data.

Any semi-supervised learning algorithm, e.g., pseudo-labeling, can

train the local classifier with surrogate loss in (1).

We maintain a model pool that contains the most recent local

classifiers trained on each data batch, and a candidate anchor points

set A. We initial the model and data pool as an empty set and initial

the noise transition matrix𝑀0 as an identity matrix. At each time

𝑡 , we denote by the model pool as {w𝑙
𝑡−𝐾+1, ...,w

𝑙
𝑡 } of size 𝐾 . After

obtaining a new local classifier w𝑙
𝑡 , we insert it into the model pool

and drop the most previous one.

Based on {w𝑙
𝜏 }𝑡𝜏=𝑡−𝐾 , we then update the anchor points set. We

first find the data in B̃𝑡 with high confidence (larger than threshold

𝜎) considered by w
𝑙
𝜏 , and insert them to the anchor points set A.

Then we perform the pseudo-consistent check to update the anchor

points set. Specifically, we reserve the data points with the sample

pseudo label in the anchor points set, and drop those data in the

candidate set that do not meet this assumption.

After updating the anchor points set A, we then calculate the

noise transitionmatrix𝑀𝑡 . For each classwith anchor points {(x𝑖 , 𝑦𝑖 =
𝑐)}𝑖=1,...,𝑛𝑐 , we estimate the noise transition matrix by

𝑀𝑡
𝑐, 𝑗 =

1

𝑛𝑐

𝑛𝑐∑
𝑖=1

Pr[𝑦 = 𝑗 |𝑋 = x𝑖 ], (5)

in which the noisy class-posterior probability is approximated by

w̃𝑡 with soft-max, which is directly trained on the noisy labeled and

unlabeled data. We summarize the API algorithm in Algorithm 1.

4.3 Adaptive Learning via Model Reuse

In this part, we introduce the proposed Adaptive learning algorithm

for weakly labeled Streams (AdaStreams). We aim to leverage the

entire stream history and reuse local models to derive an online

model that labels a new data in real-time, only storing a tiny fraction

of data as anchor points and several recent local models.

We adaptively estimate the noise transition matrix and update

the online model with weakly labeled data simultaneously. At each

time, after we make the prediction and receive the noisy labeled

data B̃𝑡 , we update w̃𝑡 by a semi-supervised learning algorithmwith

Algorithm 2 Adaptive Learning for Weakly Labeled Streams

1: Choose learning rate 𝜂 ≥ 0, representation function 𝜙 (·), let
w1 and w̃1 be any point inW

2: for 𝑡 = 1, ...,𝑇 do

3: Receive B𝑡 and output predictions

4: Receive noisy labels and formulate B̃𝑡
5: Update w̃𝑡−1 to w̃𝑡 by a semi-supervised learning algorithm

directly trained on noisy labeled data and unlabeled data

6: Sent B̃𝑡 and w̃𝑡 to the API Algorithm 1

7: Query API Algorithm 1 for𝑀𝑡 and local classifiers

8: Obtain w𝑡+1 by (6) and (7)

9: end for

noisy labeled data and unlabeled data to approximate the noisy class-

posterior probabilities. Then we send w̃𝑡 and B̃𝑡 to Algorithm 1 to

estimate the noise transition matrix𝑀𝑡 and update the recent local

classifiers {w𝑙
𝜏 }𝜏=𝑡−𝐾,...,𝑡 . Finally, enlightened by the idea of online

learning with predictable sequence [22], we propose the following

updating procedure, to reuse the recent local classifiers learned

from unlabeled data with weighted decay and the online model

that learned on the noisy labeled data to derive an accurate one,

ŵ𝑡+1 = arg min
w∈W

𝜂〈w, 1
𝑚

𝑚∑
𝑖=1

𝑔(w𝑡 , x
𝑖
𝑡 , 𝑦

𝑖
𝑡 )〉 +

1

2
‖w − ŵ𝑡 ‖22 (6)

w𝑡+1 = arg min
w∈W

𝜂〈w, 1
𝑚

𝑚∑
𝑖=1

𝑡∑
𝜏=𝑡−𝐾

𝛼𝜏 · 𝑔(w𝑙
𝜏 , x

𝑖
𝑡 , 𝑦

𝑖
𝑡 )〉 +

1

2
‖w − ŵ𝑡+1‖22

(7)

where the unbiased gradients 𝑔(·, ·, ·) is parametrized by 𝑀𝑡 and

{𝛼𝜏 }𝜏=𝑡−𝐾,...,𝑡 with 𝛼𝜏 ≥ 0 is the weight sequence decays in expo-

nential manner. The gradients is estimated based on all labeled data

each round. We summarize the algorithm in Algorithm 2.

We propose the following theorem to show that, without storing

the entire stream, the proposed algorithm simultaneously exploits

the noisy labeled and unlabeled data, and derive a statistically

consistent classifier with respect to the noise-free distribution.

Theorem 2. Under the same assumptions as Theorem 1 and set-

ting the learning rate 𝜂 = 𝐷/
√
1 +∑𝑇

𝑡=1 ‖𝑔𝑡 − 𝑔′𝑡−1‖22, the update
procedure in Eqn. (6) and (7) yields,

E1:𝑇

[
𝑇∑
𝑡=1

ℓ (𝑓 (w𝑡 , x𝑡 ), 𝑦𝑡 )
]
− min

w∈W

𝑇∑
𝑡=1

ℓ (𝑓 (w, x𝑡 ), 𝑦𝑡 )

≤ 𝐷

√√√
1 + E1:𝑇 [

𝑇∑
𝑡=1

‖𝑔𝑡 − 𝑔′𝑡−1‖22]

for any underlying clean data sequence {(x𝑡 , 𝑦𝑡 )}𝑇𝑡=1. The notations
𝑔𝑡 = 1

𝑚

∑𝑚
𝑖=1 𝑔(w𝑡 , x

𝑖
𝑡 , 𝑦

𝑖
𝑡 ) and 𝑔′𝑡 = 1

𝑚

∑𝑚
𝑖=1

∑
𝜏
𝛼𝜏 · 𝑔(w𝑙

𝜏 , x
𝑖
𝑡 , 𝑦

𝑖
𝑡 ).

Remark 3. Theorem 2 shows that the expected regret can be bounded

by the sum of gradients gap ‖𝑔𝑡 − 𝑔′𝑡−1‖22 between the online model

and the weighted reuse of local unbiased classifiers. The local clas-

sifier is aligned and reused with unbiased loss and unlabeled data,

which serves as regularization during the learning process. When the

unlabeled data are sufficient, and the data stream is rather stable,
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recent local classifiers trained on unlabeled data can provide a good

approximation for the next gradient, minimizing the regret’s upper

bound. We notice that this exploration of unlabeled data is safe, in

that for the worst-case scenario, we recover back to the 𝑂 (
√
𝑇 ) regret

in Theorem 1. Although our theoretical results require an accurate

estimation of the noise transition matrix, we demonstrate in the exper-

iments that our proposed adaptive estimation is empirically successful.

Detailed proofs will be provided in the longer version.

The proposed update mechanism makes the whole learning sys-

tem be online update, labeling new data in real-time, and robust to

weakly-supervised data with only a small storage cost.

5 EXPERIMENTS

In this section, we examine the performance of the proposed algo-

rithm on synthetic, benchmark datasets and real-world applications.

Specifically, we aim to answer the following questions:

• Q1: Does the proposed approach approximate the optimal

classifier on the noise-free distribution by learning with

weakly labeled data streams? Does it find the anchor points

in the data stream and correctly estimate the noise transition

matrix under different types of label noise?

• Q2: Does the proposed algorithm outperform other con-

tender approaches in various benchmark applications?

• Q3: Does the proposed algorithm show effectiveness on a

real-world task with complex and unknown label noise?

5.1 Experimental Settings

In this part, we describe the datasets, the label noise simulation

process, and the data stream construction details.

Benchmark datasets. We conduct experiments on 8 bench-

mark datasets from various real-world applications, including flight

delay prediction1 (Weather), electricity price change prediction

(Electricity), spam email recognition (Spam), RFID location detec-

tion2 (RFID), human activity recognition (HAR, HHAR, WISDM-

AR) and online gender recognition3 (Portraits). Unless otherwise

noted, other datasets can be found in the UCI repository4. The data

stream length varies from 940 to 54,872, and the class number varies

from 2 to 6. Some of the datasets have a slight distribution change

issue such as the Weather and Portraits datasets. We summarize

the brief statistics of benchmark datasets in Table 1.

Label noise types. Since the labels in these datasets are ground-

truth, we simulate various types of label noise by corrupting the

labels of training and validation set with two types of label noises,

which accommodates various real-world label noise:

• Uniform noise: The labels have a noise rate of 𝑝 to be

uniformly flipped to other classes. This type of label noise

simulates the random annotation noise.

• Pair noise: Labelers are assumed to make mistakes only

within the most similar pair classes. More specifically, labels

have a noise rate of 𝑝 to flip to a random pair class. This type

of label noise simulates two confusing classes.

1http://users.rowan.edu/~polikar/nse.html
2http://www.lamda.nju.edu.cn/data_RFID.ashx
3http://people.eecs.berkeley.edu/~shiry/projects/yearbooks/yearbooks.html
4https://archive.ics.uci.edu/ml/datasets.php

Table 1: Brief statistics of benchmark datasets

Dataset # Length # Dim Dataset # Length # Dim

Weather 18,159 8 RFID 940 150

Electricity 45,312 8 WISDM-AR 1,207 315

HAR 1,607 128 Spam 9,324 500

HHAR 54,872 128 Portraits 37,921 3,072

Real-world dataset with unknown label noise.We also con-

duct the experiments on a real-world animal recognition dataset

ANIMAL-10N with human annotation noise5 [24]. This dataset con-

tains confusing animals with a total of 55,000 images. The images

are crawled from several online search engines, including Bing and

Google with the noisy labels. The label noise arise in annotation

error with an unknown noise rate. 5,000 images are checked with

ground-truth labels to test the algorithm’s performance.

Data stream construction. Different from the offline learning

scenario, we perform the algorithm on data streams. For each bench-

mark data stream, we consider they are coming as mini-batches

of size 100, with 10% of them being noisy labeled with uniform

or pair label noise, 80% of them being unlabeled data and 10% of

them being test data. For the synthetic example and ANIMAL-10N

dataset, these data are non-temporal, we simulate a stream by gen-

erating random permutations of the data points or the images in

mini-batches and one-passly perform the algorithm. We conduct all

the experiments for 5 trials and use the overall mean and standard

deviation of predictive accuracy as measurement, which is the ratio

between the number of correct predictions and the stream length.

5.2 Synthetic Example

In this part, we aim to answer Q1. We use a synthetic example as

an intuitive illustration of the advantage of our proposed algorithm.

We generate a synthetic classification dataset of size 1,000 with four

classes. We generate 250 data from a Gaussian distribution with

different mean vectors for each class. We set 10% data as labeled

data, 10% data as test data, while the remaining data as unlabeled.

To simulate the noisy labels in the data stream, we flip their ground-

truth labels by both uniform label noise and pair label noise with

a noise rate of 𝑝 = 0.4. We use a two-layer neural network as the

classifier to perform the stream learning task.

Approximate the optimal classifier. We first compare the

proposed AdaStreams algorithm with three comparators. Specif-

ically, the first baseline method is the noisy label learning (NLL)

method that considers the noisy labeled data as accurate ones and

directly performs an online gradient descent algorithm. The second

baseline method is a semi-supervised learning method (SSL) [16]

that ignores the issue of label noise but it explores the unlabeled

data. We further compare the proposed approach with a robust

noisy label learning approach Co-teaching+ [28] (Robust) that fil-

ters the large loss data to obtain a robust classifier.

We report the accuracy curves of our proposed algorithm and

other approaches under symmetric and pair label noise in Figure 2.

The results show that the proposed AdaStreams algorithm con-

verges to the optimal classifier on the noise-free distribution. The

NLL and SSLmethods that consider the noisy labeled data as correct

5https://dm.kaist.ac.kr/datasets/animal-10n/



Adaptive Learning for Weakly Labeled Streams KDD ’22, August 14–18, 2022, Washington, DC, USA.

0 200 400 600 800 1000
Time

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

NLL
SSL
Robust
AdaStreams

(a) Accuracy curve with symmetric noise
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(b) Accuracy curve with pair noise

Figure 2: Accuracy curve under different types of label noise.

ones fail the learning task. The label noise robust algorithm Robust

shows a relatively good performance; even initially, its performance

is comparable with our proposed AdaStreams algorithm. However,

the performance of the Robust algorithm declines later and is not

stable, while our proposed algorithmmaintains a good performance

over time. This phenomenon indicates that instances with large loss

are not always noisy labeled data. The filter mechanism based on

loss value can lose important information during stream learning.

Find the anchor points. We then compare the proposed on-

line anchor points identification method with the offline method

that considers the data with the highest confidence as the anchor

points [7, 19]. We denote this approach as Highest-Confidence (HC).

The only difference between the HC approach and the AdaStreams

algorithm is their identified anchor points set. The HC approach

considers the instances assigned with the highest confidence by w̃𝑡

trained on the noisy labeled data as anchor points. Both of the HC

and AdaStreams approaches estimate the noise transition matrix

based on the class-posterior probability approximated by w̃𝑡 .

We introduce the 𝐿2 norm of the difference between the esti-

mated noise transition matrix and the true one as a measure. At

each time, we calculate ‖𝑀 −𝑀𝑡 ‖2 to measure the correctness of

noise transition matrix estimation. The lower ‖𝑀 −𝑀𝑡 ‖2 is, the
better we recover the true noise transition matrix based on the

proposed online anchor points identification method.

We plot the accuracy curves and the norm of the noise transition

matrix difference in Figure 3. We can see that our proposed algo-

rithm achieves a lower difference norm ‖𝑀 −𝑀𝑡 ‖2 over time and

obtain better andmore stable performance. This result is because we

better identify the anchor points than simply adapt offline methods

to the stream case. We can further observe that the difference norm

‖𝑀 − 𝑀𝑡 ‖2 of the HC approach increases with time under both

symmetric and pair label noise. This phenomenon indicates that we

cannot directly adapt approaches for anchor points identification

in the offline scenario to the streaming setting. The performance

will decrease over time with a poor estimation of anchor points.

To conclude, the empirical studies on synthetic data show that

the proposed AdaStreams algorithm approximates the optimal clas-

sifier in the noise-free distribution. Moreover, the proposed API

mechanism successfully estimates the noise transition matrix.

5.3 Comparisons on Benchmark Datasets

In this part, we aim to answer Q2. We compare the proposed ap-

proachwith other state-of-the-art methods on 8 benchmark datasets
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(a) ‖𝑀 − 𝑀𝑡 ‖2 at each time stamp and
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Figure 3: Difference norm ‖𝑀 −𝑀𝑡 ‖2 and accuracy curve un-

der different types of label noise. The lower ‖𝑀−𝑀𝑡 ‖2 is, the
better we approximate the true noise transition matrix.

under uniform noise and pair noise, respectively. For each dataset,

we simulate the uniform label noise 𝑝 = 0.4 and pair label noise

𝑝 = 0.4. We randomly take 10% data as noisy labeled ones in the

data stream while considering the remaining data as unlabeled.

We compare the proposed algorithm with six contenders, in-

cluding a noisy label learning method, a semi-supervised learning

method, and four label noise robust semi-supervised stream learn-

ing algorithms. The two baseline methods are:

• S-CoT+ [28]: Co-teaching+ is a SGD-based algorithm for

learning with noisy labels. We adapt it to the streaming

setting, named S-CoT+, in which we perform co-teaching+

at each data batch with the last classifier as initialization.

• TLP [27]: it is a graph-based semi-supervised learningmethod

designed for data streams. TLP maintains a small synopsis

of stream that can be quickly updated with new examples.

We also compare the proposed AdaStreams with four label noise

robust semi-supervised stream learning algorithms, that is,

• SIIS in Last Round [11]: SIIS is a graph-based SSL algo-

rithm. It emphasizes the leading eigenvectors of the Lapla-

cian matrix associated with small eigenvalues, such that this

method constructs a label noise robust graph and propagates

labels on this graph. We perform the SIIS algorithm in the

last data batch and use it to predict the next batch.

• SIIS-Ensemble [11]: This is an ensemble version of SIIS

approaches for data streams. For a fair comparison, we main-

tain 𝐾 SIIS models in the most recent batches and predict

the next data batch by majority voting.

• S-PL-CoT+ [16, 28]: To exploit the unlabeled data in the

data stream, we first perform the Pseudo-labeling algorithm

to assign each unlabeled data a pseudo label, then consider

them as noisy labels and then perform S-CoT+ algorithm.

• DIVIDEMIX [17]: This is a noisy labeled learning algorithm

that considers the high confidence data as clean ones and

takes the remaining data as unlabeled. We add the unlabeled

data in their proposed framework.

We also provide a comparison algorithm that estimates the noise

transition matrix by the classifier trained on noisy labeled data, to

test the superiority of our ensemble-based mechanism of alleviating

the label noise in the data stream.
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Table 2: Performance comparisons on benchmark datasets. On each dataset, 5 test runs were conducted and the average accu-

racy as well as standard deviation are presented, with the best one emphasized in bold.

(a) Symmetric label noise with 𝑝 = 0.4

Dataset S-CoT+ TLP SIIS-L SIIS-E S-PL-CoT+ DIVIDEMIX Ada-HC AdaStreams

Weather 58.04 ± 2.14 59.24 ± 1.42 61.65 ± 2.18 63.51 ± 0.73 58.87 ± 2.24 65.56 ± 1.75 50.50 ± 5.85 65.18 ± 1.75

Electricity 54.80 ± 5.43 56.21 ± 1.52 54.54 ± 2.17 52.16 ± 3.13 55.05 ± 5.59 57.25 ± 0.74 52.41 ± 6.23 57.30 ± 0.29

HAR 61.60 ± 2.83 74.55 ± 4.01 76.03 ± 1.01 75.51 ± 1.32 60.33 ± 3.47 74.39 ± 0.88 79.21 ± 0.96 79.43 ± 1.25

HHAR 52.11 ± 1.19 54.33 ± 3.23 54.32 ± 2.25 56.67 ± 0.64 50.93 ± 1.35 55.31 ± 1.06 55.52 ± 2.03 56.18 ± 1.81

RFID 54.70 ± 1.48 73.03 ± 2.33 66.06 ± 0.73 69.05 ± 0.72 54.68 ± 1.42 64.57 ± 0.76 74.25 ± 2.44 75.41 ± 1.99

WISDM-AR 57.74 ± 4.47 67.37 ± 4.82 73.09 ± 2.15 74.41 ± 1.38 56.54 ± 6.06 73.63 ± 1.19 74.21 ± 1.79 74.71 ± 0.78

Spam 83.54 ± 1.79 87.27 ± 3.32 81.72 ± 1.42 82.37 ± 1.21 84.22 ± 1.87 76.90 ± 6.53 90.09 ± 0.64 90.13 ± 0.44

Portraits 67.32 ± 0.14 66.61 ± 1.23 – – 66.77 ± 0.64 67.24 ± 0.57 72.36 ± 0.75 75.01 ± 0.42

(b) Pair label noise with 𝑝 = 0.4

Dataset S-CoT+ TLP SIIS-L SIIS-E S-PL-CoT+ DIVIDEMIX Ada-HC AdaStreams

Weather 55.36 ± 6.96 58.42 ± 2.57 66.14 ± 2.40 66.08 ± 2.51 57.70 ± 5.53 66.19 ± 2.00 66.96 ± 3.57 67.77 ± 1.45

Electricity 52.64 ± 6.52 55.81 ± 4.09 54.64 ± 0.74 55.85 ± 1.82 54.72 ± 5.21 57.08 ± 1.49 53.69 ± 4.98 57.87 ± 0.51

HAR 59.34 ± 5.41 58.61 ± 1.78 81.96 ± 1.24 82.04 ± 2.65 60.57 ± 7.78 82.68 ± 2.40 80.73 ± 1.25 78.48 ± 1.54

HHAR 52.80 ± 1.62 54.89 ± 2.79 55.03 ± 1.02 55.12 ± 1.32 51.34 ± 1.79 55.16 ± 1.75 55.46 ± 1.40 55.75 ± 2.75

RFID 55.13 ± 2.27 66.80 ± 5.36 69.45 ± 1.83 70.95 ± 1.66 54.80 ± 1.77 65.17 ± 1.03 71.89 ± 3.14 72.41 ± 1.31

WISDM-AR 56.84 ± 4.12 67.12 ± 4.51 71.48 ± 3.27 72.68 ± 2.65 53.60 ± 4.67 72.25 ± 2.25 72.91 ± 1.34 73.73 ± 2.23

Spam 83.50 ± 1.24 88.27 ± 2.12 86.04 ± 2.41 87.14 ± 2.40 84.50 ± 1.17 78.95 ± 5.40 90.02 ± 0.52 90.36 ± 0.56

Portraits 65.61 ± 0.36 66.50 ± 1.12 – – 66.91 ± 0.45 67.91 ± 0.28 71.85 ± 0.46 74.47 ± 0.39
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Figure 4: Performance comparisons on benchmark datasets.

‘(s)’ denotes symmetric noise and ‘(p)’ denotes pair noise.

• Ada-HC: This method adapts previous noise transition ma-

trix estimation methods [7, 19] to stream setting, this com-

parator estimates the anchor points by the most confidence

data considered by the classier on noisy labels.

Overall results.We report the comparison results with state-of-

the-art contenders in Table 2. The results show that the proposed al-

gorithm successfully addresses the stream learning task and outper-

forms other approaches. Overall, the AdaStreams outperforms both

robust noisy label learning baselines and robust semi-supervised

learning methods. Compared with two baseline algorithms (S-CoT+

and TLP), AdaStreams achieves higher accuracy and better stability,

indicating the need of aligning the learning model from weakly

labeled data to noise-free distribution. Compared with four robust

semi-supervised stream learning approaches, the AdaStreams algo-

rithm achieves a very promising performance, because it estimates

the noise transition matrix and obtains a statistically consistent clas-

sifier. Compared with the offline mechanism that considers the high

confidence data as anchor points (Ada-HC), the AdaStreams attains

higher accuracy on almost all datasets, which shows the superiority

of the ensemble-based anchor points identification mechanism.
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(a) Accuracy curve with contenders. (b) Estimated noise transition matrix.

Figure 5: 5(a) is the accuracy comparison on the ANIMAL-

10N dataset. 5(b) is the estimated noise transition matrix by

the AdaStreams algorithm. The estimated average noise rate

is 7.7% and the real noise rate is about 8% [24].

Effectiveness of model reuse. In the proposed AdaStreams

algorithm, we explore the unlabeled data in the high-throughput

stream by reusing the previous local classifiers as regularization.

We report the average accuracy comparison on four benchmark

datasets with two types of label noise of the AdaStreams with and

without model reuse in Figure 4.We observe that reusing themodels

that explore the unlabeled data improves the overall performance

under both symmetric and pair label noise scenarios. This results

show the effectiveness of model reuse to explore the unlabeled data

in a high-throughput stream through local classifiers on batches.

5.4 Real-world Application

We answer Q3 in this part. We conduct the experiments on a real-

world animal recognition dataset ANIMAL-10N with unknown

annotation noise. We report the accuracy comparison with other

state-of-the-art contenders in Figure 5(a). We observe that the pro-

posed AdaStreams has a very promising performance compared

with the PL-CoT+ and DIVIDEMIX methods. AdaStreams-HC adapt
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offline noise transition estimation method by considering the high

confidence data as anchor points, which achieves similar perfor-

mance with two robust online semi-supervised learning methods.

The AdaStreams algorithm shows a better performance, implying

the superiority of our online anchor points identification method.

We also report the estimated noise transition matrix in Fig-

ure 5(b). Previous empirical studies show that the label noise rate in

the ANIMAL-10N dataset is about 8% [24]. As shown in Figure 5(b),

the estimated average noise rate is about 7.7%, which is very similar

to the underlying noise rate in this real-world task.

6 CONCLUSION

In this paper, we study the problem of learning from weakly la-

beled data streams. We design a novel ensemble-based approach

to explore the unlabeled data to identify the anchor points in the

data stream and adaptively estimate the noise transition matrix.

Based on that, we propose a stream learning algorithm that simul-

taneously exploits the noisy labeled data and unlabeled data via

model reuse, and obtain a statistically consistent classifier on noise-

free distribution. Our proposed AdaStreams algorithm is equipped

with nice guarantees: by expected regret analysis, we theoretically

justify the usefulness of unlabeled data and demonstrate that the

proposed algorithm satisfies a low regret in expectation. We con-

duct extensive experiments on synthetic, benchmark datasets as

well as a real-world application, demonstrating the superiority and

robustness of the proposed algorithm.
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